
PostgreSQL Backups
the Modern Way

PGDay Russia 2016
St Petersburg, Russia

Magnus Hagander 
magnus@hagander.net



Magnus Hagander
Redpill Linpro

Infrastructure services
Principal database consultant

PostgreSQL
Core Team member
Committer
PostgreSQL Europe



So, backups...
Do you make them?



Backups
Are not superseded by replication
Or cloud
Or containers
..



Backups
Are boring
But I'm glad you have them



Backups
When did you last restore?



PostgreSQL backups
Ok, enough generic
What about backups in PostgreSQL?



Seen this before?
pg_dump options:

Fc    = custom format
Z     = compression
j     = parallel
a = data only, s = schema only
n = schema, t = table
...
    



pg_dump
Don't use for backups

Has other good usecases
Too slow to restore
Too much overhead
No PITR
Exceptions, of course



Physical backups
Base backups
With or without log archive
Fast restore
Full cluster only
Platform specific



Base backups
#!/bin/bash
set e

psql U postgres q "SELECT pg_start_backup('foo')"

tar cfz /backup/$(date +%Y%m%d) /var/lib/pgsql/data

psql U postgres q "SELECT pg_stop_backup()"
    



Base backups
So many ways to get that wrong

Spot one?



Base backups
This used to be the only way
Many scripts around that does it
Many of those are broken...



pg_basebackup
Base backup over replication protocol
Safe
Error handling and recovery
For most cases

(we'll cover other options later)



pg_basebackup
#!/bin/bash
set e

pg_basebackup D /backup/$(date +%Y%m%d).tar Ft x
    



Needs replication
Defaults need to change
But for now:

wal_level = hot_standby
max_wal_senders = 5
    

local  replication  postgres  peer
    



Backup formats
plain

Safe copy of data directory
Not good with multiple tablespaces

tar
Destination still a directory
Each tablespace gets one file

base.tar



Transaction log
xlog required to restore backup
From beginning of backup to end
In the log archive, right?



Including xlog
Always use -x or -X to include xlog
Makes backup independently consistent

With or without log archive
May back up xlog twice

Use even with log archive!



Including xlog
-X fetch

Fetches xlog at end of backup
Can fail if xlog rotated

-X stream
Replicates xlog over secondary connection
Fewer failure scenarios
Does not work with tar



Backup compression
pg_basebackup -Z

Compression happens in pg_basebackup
Tar format only
CPU usage
Remote server?



Transfer compression
SSL compression

Much harder these days
ssh tunneling

ssh mydbserver c "pg_basebackup Ft D Z9" > backup.tgz
    



That's it!
With that, you have backups
That work
And are (reasonably) safe



PITR
Point in time recovery
You all want it
A bit more setting up



archive_command
To use PITR, we use log archiving
like this?

archive_command =
  'test ! f /mnt/archivedir/%f && cp %p /mnt/archivedir/%f'
    



Don't do that!



pg_receivexlog
Runs on archive server
Uses streaming replication
Generates log archive



pg_receivexlog
More granular recovery
Safe against server restarts
Can follow timeline switches on master



pg_receivexlog
Always use with replication slot

As of 9.4
But we said modern..

Backups should block



pg_receivexlog
pg_receivexlog D /log/archive h master S backup
    

Ensure it's restarted!



Backup retention
How long to keep around?
What granularity?
...



Backup retention
Recovery needs:

Base backup
All xlog from start to end
All xlog from end to pitr

(that's why we use -x!)



Backup retention
find is o�en enough
Delete logs older than X, base older than Y

Safe if -x was used!

#!/bin/bash

find /var/backups/basebackup type f mtime +30 print0 |
   xargs 0 r /bin/rm

find /var/backups/xlog type f mtime +7 print0 |
   xargs 0 r /bin/rm
    



Not enough?
Handles the simple cases
But has limitations
Particularly in management



Other tools
Barman
pgBackRest



Barman
Backup scheduling
Log archiving
Retention management
Multi-server
Restore shortcuts



Barman
Developed by 2ndQuadrant
Python
GPLv3
Primarily ssh+rsync

1.6 just learned about pg_receivexlog!
Does not use pg_basebackup
No (safe) concurrent backup support



pgBackRest
Backup scheduling
Log archiving
Retention management
Multi-server
Restore shortcuts



pgBackRest
Developed by CrunchyData
Perl
MIT license
ssh but not rsync



pgBackRest
Custom protocol
Parallel backup sessions
Full/Differential/Incremental

Segment based



pgBackRest
No pg_receivexlog support
No concurrent backup support
Yet



Summary



Don't roll your own!



Don't roll your own
Too many pitfalls
Both base backups and archiving
Backups are too important!



Don't roll your own
Primary choice

Built-in
If it's enough

Secondary choice
pgBackRest
Barman

Tertiary choice
Restart from top of slide



Thank you!
Magnus Hagander 

magnus@hagander.net 
@magnushagander 

http://www.hagander.net/talks/

This material is licensed


